Initialization Strategies for the CFS

Ben Kirtman, Eric Altshuler, Kathy Pegion George Mason University and the Center for Ocean-Land-Atmosphere Studies

The Initial Condition Problem

- Best State Estimate
 - Data Assimilation in the Separate Component Models
 - Maybe Not Ready to Do the Coupled Assimilation Problem
- Coupled Model Climate ≠ Observed Climate
 - Anomaly Initialization
- Coupled "Modes" of Coupled Model ≠ Observed Coupled "Modes"
 - Initializing the Coupled Modes
 - Identifying the Coupled Modes: EOFs, SVDs, ...
 - Context of the Forecast Environment

GODAS

CFS Simulation

Drift

GODAS

CFS Simulation

Drift

Coupled Ocean-Atmosphere Initialization

SSTA Standard Deviation as Function of Month

The Initial Condition Problem

- Best State Estimate
 - Data Assimilation in the Separate Component Models
 - Maybe Not Ready to Do the Coupled Assimilation Problem
- Coupled Model Climate ≠ Observed Climate
 - Anomaly Initialization
- Coupled "Modes" of Coupled Model ≠ Observed Coupled "Modes"
 - Initializing the Coupled Modes
 - Identifying the Coupled Modes: EOFs, SVDs, ...
 - Context of the Forecast Environment

Why Did the Forecasts Bust?

- Predictability Issue
 - Not Enough Ensemble Members
 - What Actually Happened was an Outlier
 - Westerly Wind Burst
- Something Wrong with Initial Conditions
 - Anomaly Initialization Did Not Help
 - Coupled Modes of the Coupled Model

Depth of 20C Isotherm

ENSO Precurser Three Month Lead

ENSO Precurser Nine Month Lead

The Initial Condition Problem

- Best State Estimate
 - Data Assimilation in the Separate Component Models
 - Maybe Not Ready to Do the Coupled Assimilation Problem
- Coupled Model Climate ≠ Observed Climate
 - Anomaly Initialization
- Coupled "Modes" of Coupled Model ≠ Observed Coupled "Modes"
 - Initializing the Coupled Modes
 - Identifying the Coupled Modes: EOFs, SVDs, ...
 - Context of the Forecast Environment

Identifying the Coupled Modes

- Forecast Environment
- Analogue Approach
 - Heat Content/D20C Analogues Don't Work
 Coupled Modes of Coupled Model are Not the
 Same as the Observations
 - Use Long Simulation to Identify "Best Fit" SST Evolution (9 Months)

Relate Analogue "Initial State" to Observed Initial State

"Initial Condition" D20C Analogues Do Not Work

SSTA GODAS

SSTA Forecast

SSTA: Best D20C Analogue

"Initial Condition" D20C Analogues Do Not Work

D20C GODAS

D20C Forecast

D20C: Best D20C Analogue

GODAS SSTA

SSTA: Best SST Evolution Analogue

GODAS SSTA

SSTA: Best SSTA Evolution Analogue

GODAS D20C

D20C: Best SSTA Evolution Analogue

D20C: Best SSTA Evolution Analogue

GODAS D20C

Initializing with the Coupled Modes

- Use Long Simulation to Identify "Best Fit" SST Evolution (9 Months)
- Relate Analogue "Initial State" to Observed Initial State
 - Singular Value Decomposition
- Project, Reconstruct, Re-Forecast (Anomaly Initialization)

Equatorial Pacific SSTA Forecast

CFS Control

GODAS

Equatorial Pacific D20C Forecast

CFS Control

GODAS

Equatorial Pacific SSTA Forecast

CFS Control

GODAS

Equatorial Pacific D20C Forecast

CFS Control

GODAS

Conclusions

- Anomaly Initialization Not Much Help
- Coupled Modes in Observations are not the Same as the Coupled Modes in the Model
 - ENSO Precurser, D20C Analogues Don't Work
- SSTA Evolution Analogues Show Promise
 - Need More Longer Simulations (Easy)
 - Need Many More Forecast Tests (Difficult)
- Predictability Issues
 - WWB, Ensemble Size
- Expand the Approach to the Coupled System
 - Blending or Nudging